
U.S. NAVAL ACADEMY

COMPUTER SCIENCE DEPARTMENT

TECHNICAL REPORT

Low Level Segmentation for Imitation Learning Using the
Expectation Maximization Algorithm

Warner, Andrew D.

USNA-CS-TR-2005-04

May 3, 2005

USNA Computer Science Dept. ◦ 572M Holloway Rd Stop 9F ◦ Annapolis, MD 21403

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
03 MAY 2005 2. REPORT TYPE

3. DATES COVERED
 00-05-2005 to 00-05-2005

4. TITLE AND SUBTITLE
Low Level Segmentation for Imitation Learning Using the Expectation
Maximization Algorithm

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Naval Academy,Computer Science Department,572M Holloway Rd
Stop 9F,Annapolis,MD,21403

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 1

Low Level Segmentation for Imitation Learning Using
the Expectation Maximization Algorithm

Midshipman 1/C Andrew D. Warner

United States Naval Academy

1 Introduction

 Imagine a robot that is able to develop skills on its own, without being
programmed directly. This robot would be invaluable in any business, factory, or
laboratory. Unfortunately, this problem, known as inductive learning, is very difficult,
and has several varieties. One such is imitation learning. The overall process of imitation
learning begins with one robot observing another robot performing a task. The watcher
then breaks down, or segments, the demonstrating robot’s actions into basic actions
called planning units. Next the observing robot uses the planning units to create a plan
that accomplishes the required task. The execution of a successful plan demonstrates that
the robot has correctly implemented an inductive learning process. The scope of this
research does not allow the problem of imitation learning to be discussed in its entirety;
however, it does investigate an important subset of the larger problem. This paper
focuses on the segmentation of the data, specifically how to break it up into the steps that
provide the building blocks of the robots ultimate plan.

2 High Level Problem[1]

 Imitation learning is a process by which a robot learns to plan through
demonstration and imitation. The goal of inductive learning is to create a plan. In this
paper, planning refers to how the robot sequences planning units to accomplish the task at
hand. Imitation learning involves two levels, low and high. The high level involves
sequencing the planning units to create a plan. In most implementations of imitation
learning the robot is preprogrammed with the planning units needed to create the plan.
Low level imitation learning focuses on learning the planning units. In low level
learning, the planning units are unknown and the robot must first determine what they are
in order to create a high level plan. High level learning that ignores low level issues has
been well explored [2,3]. However, in a true imitation scenario, a robot must first learn
the basic operations required to complete a task before it can learn how to sequence them
to solve the problem.
 For example, if a machine needed to create a plan to pick up a rock and move it
across the room, the machine would need the planning units for moving, picking up, and
setting down. The planning unit “pick up” is made of low level actions such as moving
the arm, grabbing onto the rock, lifting the rock, and holding the rock. Each planning
unit is composed to many low level actions; these actions are what low level imitation
learning take into effect.

 2

This paper focuses on how to segment the observed data into the actions that
create the planning units. This is the first step in beginning to understand low level
issues. If the observing robot is going to imitate the demonstrator’s actions, then it needs
to understand what those actions are. With our research we attempted to create a method
that is able to analyze the observed data and break it up into basic movements or actions
that can be used to create the planning units which are ultimately used to create the final
plan. This research provides the foundation for implementing low level imitation
learning.

3 Proposed Solution

 The process of breaking up the observed data into the basic actions is called
segmenting. Segmenting is traditionally done by hand. The designer looks at the data
and determines where the actions begin and end. It can also be done through heuristics,
meeting a predetermined set of conditions which dictate when an action is complete.
Another way to segment would be to have the demonstrator send a signal whenever a
basic step is complete this provides direct guidance on when to segment. However, this
requires the cooperation of the demonstrator and prevents completely independent
learning. An additional approach to segmentation is to use the statistical properties of the
data. This method is based upon the idea that every basic step is composed of continuous
and repetitive actions that change in character when the steps are completed. It appears
that points of discontinuity in the data indicate the breakpoints between actions.
 The data collected from the demonstrating robot is in vector form. Each vector
contains several numbers that represent the states of the robots motors. We believe that
throughout a particular action the states of the motors remain relatively constant.
Segmenting the data will break it up into groups with similar properties. Each of these
groups will represent a low level action. By segmenting the data, we will know which
data points represent a particular action.
 This paper discusses the four methods studied to segment the observed data using
its statistical properties. Throughout the course of the research we evaluated Decision
Trees, Bayesian Networks, Kalman Filters, and the Expectation Maximization algorithm.
Each of these methods had different strengths and applications; however, for the project,
we chose to implement the Expectation Maximization algorithm (EM).

4 Methods Studied[4]

4.1 Decision Trees

A decision tree outlines the process for making decisions and provides a simple
and easy to understand introduction to inductive learning. The basic units of a decision
tree are sets of attributes that describe a situation or an object. The simplest version uses
Boolean attributes (attributes with a true or false answer). The tree, as shown in figure
4.1.1 is a hierarchical set of questions used to classify data. The tree is created using
several different data points; the more data the more accurately the tree can make

 3

decisions. There are many different ways to create a decision tree and many different
trees can be created using the same data. The trick is to make the tree as small and
simple as possible by testing the most important attribute first. A simple algorithm,
which works well on small data sets, creates decision trees by combining the attributes in
every possible order, i.e. forming every possible tree. Note that not every attribute must
be used in the creation of the tree. For example, in figure 4.1.1, the attribute Bounce is
not necessary in tree A. Next a greedy algorithm goes through and selects the shortest
tree. The greedy algorithm simply compares two trees and then keeps the one that is
shorter. The algorithm compares every tree and is not efficient, but it is adequate for this
example. More efficient algorithms use information theory to select the most useful
attributes for the root of the tree. Figure 4.1.1 shows two trees created using the same
data. Both trees are correct; however tree A is obviously shorter and simpler then tree B.
 Decision trees are designed for data that can be labeled or expressed with
propositions. In “How To” manuals and trouble shooting guides the data is labeled,
consequently they are often written like a decision tree. However, Decision Trees are
impractical for our situation because the data is unlabeled. Our data consist of several
numbers in vector form, it is not easily labeled. Decision trees, while not a practical
solution to our problem, provide an easily understood introduction to learning algorithms.

4.2 Bayesian Networks

 Bayesian Networks are a type of directed graph useful for concisely showing
conditional probability distributions. Each node in the graph is conditionally dependent
on its parents and independent of its children. In conditional probability, a is
conditionally dependent on b because the existence of b alters the likelihood of a. This is
represented mathematically as P(a|b) = x, and means that the probability of a given that

 4

() ()
()bP

baPbaP ∧
=| () ()

()aP
baPabP ∧

=|

 (Conditional Probability)

 () () () () ()aPabPbPbaPbaP || ==∧

() () ()

()

() () ()
()aP

bPbaPabP

bP
aPabPbaP

||

||

=

=

Figure 4.2.1: Bayes’ Rule

only b is known is x. Bayes’ Rule, derived in figure 4.2.1, is the method used to solve
conditional probabilities. Bayesian networks provide a visual representation of the
probabilities solved by Bayes’ Rule.
 While Bayesian networks are a concise way of visually representing conditional
probability, they are not a practical solution for the segmentation problem. Visually
representing the data is not necessary because we are trying to discover the distributions
of the data. While knowing the conditional probabilities of the data would be nice, we
want to be able to segment the data into basic actions, and it is unlikely that conditional
probabilities alone will allow us to do this.

4.3 Kalman Filters

 Kalman filters predict the next state of a system based on a linear function with
Gaussian noise added. For example, assume that an 8-ball is rolling across a pool table.
This motion is the linear function. In a perfect world, the ball would continue on its path
and the linear function would always predict the ball’s exact position. However, in an
imperfect world there is always variance in the ball’s motion; other balls, the table rail, or
an unleveled table. This variation in the ball’s movement is not accurately modeled by a
linear function; adding Gaussian noise to the function creates a more accurate model.
Kalman filters use conditional probability to change the Gaussian variance to model the
actual movement of the ball. If the ball were to bounce off of the table’s rail, the model
adjusts to fit ball’s new motion.
 The way that Kalman filters modify the Gaussian is similar to the EM algorithm;
however, Kalman filters are used for modifying linear functions. We believe that our
data does not reflect a linear function but is better represented by a cluster of data points.
Kalman filters are important because of their ability to update the Gaussian variance
which provides the foundation for the EM algorithm.

 5

()() () ()

()() () () ()

()() () ()ijij

d

ijijd

xx

d

xxxP

exxxP

exP ijij

µεµεπ

µεµ
επ

επ

µεµ

−−−

−=

−−−⋅

=

⋅=

−

−

−−− −

12

1

2

2
1

2

2
1||2lnln

ln2
1

||2

1lnln

||2

1lnln
1

T

T

T

Figure 4.4.1: Simplification using ln()

4.4 Expectation Maximization Algorithm (EM)

The purpose of the EM algorithm is to learn hidden variables. For a variable to be

a hidden variable it must not be observable within the available data. Many real world
problems have hidden variables in them. For example, if someone has a heart disease,
the disease itself is not observable; however, the symptoms and causes are. Using the
variable heart disease ties all of the symptoms and causes together and greatly simplifies
the conditional probabilities. The EM algorithm outlines a process for discovering values
for these hidden variables. Because it is a process, the algorithm can be applied to many
different situations and data. For our research we chose to study the EM algorithm as it
applies to a mixture of Gaussian distributions. A mixture of Gaussians refers to several
different distributions that represent a group of data. Each data point belongs to a
specific Gaussian; however, the combined data is accurately modeled by the several
Gaussian distributions. Thus, the data is represented by a mixture of Gaussians. The
brilliance of the EM algorithm is that, when given a seemingly random set of points
generated by several independent Gaussian distributions, it will very nearly recreate the
original Gaussian distributions.
 The EM algorithm uses an iterative process that is initialized with random
numbers. For example, in the case of the mixture of Gaussians, each Gaussian’s mean
and covariance matrix are initialized with randomly. Each cycle through the algorithm
adjusts the means and covariance matrix, bring them closer to the correct values. Every
iteration of the EM algorithm is guaranteed to be a more precise estimate because this
algorithm maximizes the likelihood of the multi-dimensional Gaussian probability
function. Likelihood, in this paper, refers to the log of the probability function. Taking
the log of this function enables us to replace multiplication with addition, making the
equation easier to work with when taking the derivative. Figure 4.4.1 shows what
happens when the log of the multidimensional probability is taken. Maximizing the
likelihood guarantees a better estimate after every iteration.
 There are two basic steps to EM, the E-step and the M-step. The E-step computes
the probability of the current mean and covariance of each Gaussian given the data. The
M-step then maximizes the probability that Gaussians generated the data by adjusting the
mean and covariance matrices. This process will be explained in greater detail later in
this paper.

 6

() () ()

dimensions

mean covarience point

||2

1 1
2

1

2

=

=

=

=

⋅= −−− −

d

dc
ba

y
x

x

exP

y

x

xx

d

µ
µ

µε

επ

µεµ T

Figure 5.0.1: Multivariate Gaussian Distribution

After studying the methods discussed above we determined that the EM algorithm
is the best match for our research. Our data consist of unlabeled vectors that are tied
together by Gaussian distributions. As discussed earlier, the Gaussian implementation of
EM is designed to handle this type of data. Thus, because the EM algorithm can be
applied to our problem we choose to implement it to segment the data. If the EM
algorithm works, it will find a set of parameters for a mixture of Gaussian distributions
that will define each of the basic steps (we assume that the data points representing each
action will cluster into Gaussian distributions). With those distributions the robot will be
able to properly segment the data and begin building plans that incorporate the newly
learned actions.

5 Implementation

 In order to understand the EM algorithm, we first implemented it on a set of two-
dimensional Gaussian distributions with known means and covariance matrices. We
began with the simplest multidimensional example in order to understand the algorithm
before progressing on to implementing the dimensions of the data.
 The first step to implement the EM algorithm was to create a valid set of test data.
This data was generated using the function in figure 5.0.1. As inputs, this function takes
a data matrix (x), a mean matrix (µ), and a covariance matrix (є). The covariance matrix,
which describes the shape of the Gaussian function, is symmetrical along the diagonal
and its length and width are equal to the number of dimensions of the problem. The
mean and data matrices have a variable for every dimension and are stored as one column
matrices. The mean matrix indicates where the Gaussian function is centered. Each
Gaussian distribution has one mean and covariance matrix that is constant, these matrices
defines the distribution. Figure 5.0.1 shows the x, µ, and є for a two-dimensional
Gaussian distribution
 The test Gaussians were formed by choosing random numbers for the mean and
covariance matrices. The resulting plot is shown in figure 5.0.2. The x and y values are
from the data points entered into the function. The z value is generated by the Gaussian
function; it represents the probability that that point was generated by the Gaussian. The
z values give each point its height which gives the graph its hill shape.
 Next we created thousands of random points with x, y, and z values. The z values
were compared to the answer of x and y being plugged into the Gaussian. If the

 7

randomly generated z value was less then or equal to the z values generated by the
Gaussian, then the (x, y) point was accepted. This process generates random numbers
drawn from the Gaussian distributions; it is illustrated with the one dimensional example
in figure 5.0.3. Points below the bell-curve are considered to be part of the Gaussian and
are accepted.

After repeating the data generation process three times, to create three
independent and random Gaussians, we had created the test data necessary to implement
a two dimensional Gaussian version of the EM method correctly. The x and y values of
the test data are plotted in the graph in fig 5.0.4, the three major groups represent the
three Gaussian distributions. This graph is the raw data.
 With the two dimensional data available, we began implementing the EM
algorithm. As written earlier, the two basic steps in the EM algorithm are the E and M-
step. In the E-step the expected probabilities of the Gaussians based on the data is
generated. The M-step then maximizes the mean and variance in order to best represent
the data. Because the M-step maximizes the likelihood of the data, every pass through
the EM algorithm improves the probability that the new mean and variances were
generated by the data. After several passes through, the means and variance represent the
data better than the original Gaussians that generated them. This is because the randomly
generated data is an incomplete representation of the Gaussian that created it and
accurately modeling it requires a different Gaussian than the one that created it. The
more points that are available for analysis, the closer the Gaussian generated by the EM
algorithm will represent the original mean and covariance.

 8

()
() () ()jjij

jij

xPicPicxPP

xicPP

⋅=⋅==

==

|

|
Rule Bayes'

()
() ()
() ?

5.0.1) Figure(in |

 Solve toNeeded Values

=

==
==

j

jj

i

ij

xP

xPicxP
icP

P

ω

()

() () ()
()

()
()

()
()

()
() () () ()

()
() () () 321

321

321

3|2|1|
|

3|2|1|

3|2|1|
1

|3|2|11

 Solve toHow

ωωω
ω

ωωω

ωωω

⋅=+⋅=+⋅=

=
=

⋅=+⋅=+⋅==

⋅=
+

⋅=
+

⋅=
=

=+=+==

cxPcxPcxP
icxP

P

cxPcxPcxPxP

xP
cxP

xP
cxP

xP
cxP

xcPxcPxcP

xP

jjj

ij
ij

jjjj

j

j

j

j

j

j

jjj

j

Figure 5.1.1: Using Bayes’ Rule to solve for Pij

5.1 E-Step

 Simply put, the E-step calculates the probability of the data generating each
Gaussian. Figure 5.1.1 uses Bayes Rule to break down the derivation of the E-step,
which is explained in the following paragraphs.
 The E-step is relatively simple to implement. The first iteration through the
algorithm uses randomly generated means, variances, and component weights as starting
points. Because we know that the data was generated by three distributions, three
Gaussians are used in the E-step (i=3). Knowing how many Gaussians to use in the E-
step is one of the trickiest parts of using EM. Using too few results in the exclusion of
some of the data and using too many results in several Gaussians covering the same set of
points. The only way to figure out how many Gaussian distributions are present is to
either plot the data and infer the number (figure 5.0.4 clearly shows three distributions),
or to work the algorithm several times and try to deduce when the right number of
Gaussians have been discovered.
 Once the number of Gaussians has been decided and the initial means, covariance
and component weights have been created, it is time to solve for Pij, the probability that
the ith Gaussian was created by the jth data point, xj. This process begins with Bayes’
Rule. Using Bayes’ Rule breaks Pij down into probabilities that can be calculated (figure
5.1.1). P(xj | c=i) is the probability that xj was generated by Gaussian c=i, it is calculated
by plugging xj and the values for Gaussian c=i into the multi-dimensional Gaussian
function in figure 5.0.1. The component weight (ωi) is the percentage of the data that the
distribution covers. It is updated in the M-step. The last element necessary to complete

 9

∑=
j

iji PP

Figure 5.1.2

() ()

points data ofnumber =

→

→⋅−⋅−

→⋅

∑

∑

∑

m
m
P

P
P

xx

P
P

x

j
i

ij

j
i

i

ij
ijij

j
i

i

ij
j

ω

εµµ

µ

T

Figure 5.2.1: M-Step

Bayes’ Rule is P(xj). The math shown in figure 5.1.1 provides a solvable answer for
P(xj). Now that all the information necessary to solve for Pij is available, the E-step can
be accomplished.
 Every Pij is calculated, and then the Pi values, the sum of the Pij for each Gaussian
(c=i), are calculated using the formula in figure 5.1.2.

5.2 M-Step

 In the M-step the new mean, covariance and component weights are computed.
Figure 5.2.1 breaks down the M-step, which is explained in the following paragraphs.

The component weight (ωi) is unique for each Gaussian. It is the probability that
the Gaussian was generated by the data. For example, if the Gaussian contains 25 data
points out of 100, then ω = .25. The component weight is equal to the Pi value for each
Gaussian divided by m (the total number of data points). Because the data is Gaussian
the sum of all Pi must equal one.

 In order to compute the new mean for each Gaussian each data point (xj, which is
a d x 1 vector where d is the number of dimensions of the problem) is multiplied by the
ratio Pij / Pi, as calculated in the E-step. The Pij / Pi ratio determines how likely xj is
included in the ith Gaussian. The new mean (µi) is calculated by summing Pij / Pi * xj for
all j.

The new covariance matrix (є i) is calculated in the same manner as µi. The same
ratio (Pij / Pi) is used. However, because є i is a d x d matrix, additional calculations must
been performed to create a d x d matrix out if a d x 1 matrix. Furthermore, є i must be
symmetrical along the diagonal. In order to have both of these properties hold true, the
covariance is created by multiplying (xj - µi) by (xj - µi)T. The T means that the matrix is
transposed. So in the M-step, transposing the second d x 1 matrix creates a product that
is a d x d matrix (d x 1 matrix * 1 x d matrix = d x d matrix) and is symmetrical along the
diagonal. The subtraction (xj - µi) is done to keep the values of the covariance matrix
from becoming so large that they cover every data point.
 These new mean, covariance, and component values are then passed back to the
E-step and the process is begun anew. After about ten iterations of the EM algorithm the
mean, covariance, and component values become relatively constant between iterations

 10

and are almost identical to the initial distributions. This means that our implementation
was correct and it is time to begin implementing the data.

5.3 Implementation on Problem Data

 When we apply the EM algorithm to our segmentation problem, we are expecting
certain results. We believe that the mean and covariance matrices will create Gaussian
distributions that model the data that performs a specific action. This way, by applying
the Gaussian function in figure 5.0.1 with the newly derived mean and covariance
matrices we will be able to determine when each action starts and stops. Inserting the
start and stop points will segment the data into the actions that make up the planning units
referred to in section 2.

6 Methods

 To implement the EM algorithm we wrote a C++ program. We used a header file
downloaded from www.techsoftpl.com that performs the necessary matrix calculations.
The file is written so that the user inputs the number of Gaussian distributions contained
within the data along with the number of dimensions that the problem data is in. For
example, if the data is in five columns then the data is in five dimensions. The program
reads in the data and prints out the values for each Gaussian distribution after every
iteration of the algorithm. The algorithm performs 10 iterations and then finishes,
printing the final distributions to the screen.

7 Results

 The first set of data analyzed contained four dimensions. Two of the dimensions
represented the motor movements of wheels, their values ranged from zero to one. The
other two dimensions represented the robot’s arm movements. Their values were either a
one or a zero. While running the algorithm on the data, the generated covariance matrix
shrank to zero and the probabilities of the data became infinite. This occurred because
the arms data contained only three possible values, (0,0), (0,1), or (1,0). This essentially
created three separate points instead of three separate distributions. If a Gaussian zeroes
in on a single point its variance shrinks to zero. This happens because the variance is
designed to form a net around all of the points in the distribution; this net dictates which
points belong to the distribution and which ones do not. A distribution that contains only
one point needs a very small variance. When the variance gets this small, the probability
of the point within the Gaussian becomes infinite. This crashes the algorithm.
 After realizing this, we decided to remove the data containing the arm
movements. Now the data is only two dimensions, a plot of it is shown in figure 7.0.1.
Running the EM algorithm on this new set of data yielded predictable answers. There are
obviously three major distributions amongst the data, and the EM algorithm could find
them. However, EM did not always return the same set of Gaussian distributions. For
example, the algorithm would sometimes split the data in the lower left corner of the
graph amongst two distributions, or one Gaussian would cover the left side of the graph

 11

and the other two would cover the right side of the graph. In certain conditions, all of the
Gaussians would center themselves in the middle of the graph. The above situations
were a result of where the means of the distributions were initialized. Because the data
on the graph was so dense, the distributions often changed their mean values only slightly
and expanded their covariance matrices to cover as many points as possible. This could
be avoided if the data was less dense.
 Also, after graphing the two dimensional motor data, there appears to be a linear
function in the lower left corner of the graph. To accurately model this data, a Kalman
filter should be implemented.

8 Conclusion

 After analyzing the available data, we have concluded that further testing is
needed. The data could be segmented in the two dimensional implementation. However,
the data was unable to be segmented in four dimensions. This was a result of having only
a one or zero value for the arm movements. In order to fully conclude if using the EM
algorithm is a viable way to segment the low level actions of a demonstrating machine,
more data should be tested. This other test data should have a greater diversity amongst
itself, i.e. no one or zero components. In conclusion, the EM algorithm should be tested
more thoroughly before concluding that it is unable to segment the imitation learning
data.

 12

References

[1] F. L. Crabbe and R. Hwa. Robot imitation learning of high-level planning

information. USNA Computer Science Department Technical Report USNA-CS-TR-
2005-03.

[2] T Inamura, I. Toshima, and Y. Nakamura. Acquisition and embodiment of motion

elements in close mimesis loop. In Proceedings of the IEEE International
Conference of Robotics and Automation, pages 1539-1544, 2002.

[3] M. J. Mataric. Learning to behave socially. In Proceedings of the Third International

Conference on Simulation of Adaptive Behavior, 1994.

[4] S. Russell and P. Norvig. Artificial intelligence a modern approach. Second edition.

Pearson Education, Singapore 2003.

